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L INTRODUCTION

The design of a reinforced concrete slab is complicated by the difficulties
involved in estimating the service load behaviour. The designer is first
confronted with the problem of selecting a suitable slab thickness. A reasonable
first estimate is desirable since, in many cases, the slab self-weight is

a large proportion of the total service load. Strength considerations alone
generally result in the selection of a slab depth which leads to in-service
problems, in particular, excessive deflections. The relatively low steel
percentages commonly used in slabs are evidence of either the conscious

or the unconscious consideration of serviceability at the design stage.

In AS 1480-1974, two alternative procedures are proposed for the control

of deflections. Deflections may be calculated directly and the magnitudes
compared with specified deflection limits. Although simple, semi-empirical
methods have been developed to predict the deflections of reinforced concrete
beams, the same is not true for two-way slab systems. The three dimensional
nature of the problem, the less well defined influence of cracking and tension
stiffening, and the development of biaxial creep and shrinkage strains create
additional difficulties. Practising engineers have no reliable method for
estimating either short-term or long-term slab deflections and the code

gives no guidance.

Alternatively, AS 1480-1974 suggests that deflections need not be calculated
if the adopted span to effective depth ratio (L/d) is less than a maximum
specified value. This approach is simple and therefore ideal for use in
routine design. However, it has been shown (6, 9, 12) that the maximum span
to depth ratios specified in AS 1480-1974 are not adequate for controlling
deflections. This inadequacy has been recognised in the initial draft of

the proposed Unified Concrete Code of the Standards Association of Australia.
Recently Rangan (8) proposed a simple expression for allowable span to depth
ratios for reinforced concrete beams which appears to ensure adequate deflection
control. Rangan's expression was developed from the deflection computation
procedure proposed by Branson (2,3) which has been widely accepted (1,10)

and agrees well with test data.

In this paper, Rangan's expression for the maximum allowable span to depth
ratios for reinforced concrete beams is extended to include the cases of
two-way edge-supported slabs, flat slabs and flat plates. This extension
stems from an earlier investigation of span to depth ratios for slabs (6)

and is based on data obtained from an extensive series of parametric computer

experiments with reinforced concrete slabs (4,5). The proposed extension
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of Rangan's expression provides a rational procedure for obtaining a maximum
allowable span to depth ratio for the entire range of reinforced concrete flexural
members. The procedure is at once simple and flexible and provides the designer

with a reliable and sure means for the control of deflections.

2. ALLOWABLE SPAN TO DEPTH RATIOS FOR BEAMS

2.1 Rangan's Expression

Using an elastic analysis and a simplification of Branson's equation (2)
for the effective moment of inertia of a cracked section, Rangan (8)
proposed the following expression (with some notation changes) for the

maximum allowable span to depth ratio of a reinforced concrete beam:

33

ol 0.
é bef Ec ]:
L/d £ Az XAs [L [m“’v* = WS)] (1)

where X; is a factor which depends on the support conditions and may be
taken as 1.0 for a simply-supported member

1.3 for an exterior span of a continuous member

1.5 for an interior span of a continuous member

and 0.3 for a cantilever.

A2 is a factor for flanged beams and is similar to the multipliers recommended
in Table 10.1.4(4) of AS 1480-1974 (10). X, varies from 0.8 for narrow webbed
flanged beams to 1.0 for rectangular sections. o accounts for the effect of

the reinforcement ratio, p, and the modular ratio, n, on the effective moment

of inertia of the beam after cracking and

151"5_11
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8.0 for p n > 0.045

AN

a=1/7pn £5.0 for p n £ 0.045

bef is the effective width of the compressive face at the midspan region
(or at the support of a cantilever).

L is the effective span.

EC is the elastic modulus of concrete.

W is the sustained load per unit length.

¥ is the variable load per unit length.
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If the member is NOT supporting non-structural elements likely to be damaged

by excessive deflection
A is the maximum permissible total deflection (say L/240)
c is equal to 1 + F

For members supporting non-structural elements likely to be damaged by

excessive deflection -

A is the maximum permissible incremental deflection (or that part
of the total deflection which occurs after the attachments of

non-structural elements, say L/500 or L/1000);
c is equal to F

and F is the long-term deflection multiplication factor (10)

= - >
F=2.0 1a2 Asc/Ast 2 0.6 3

2.2 Discussion

In the development of equation 1, the effective moment of inertia of the cracked
beam section under the maximum in-service moment, M, was chosen to provide

close agreement with Branson's well-known equation for Ie’ namely

]+ (4)

I, = (MC/M)3 [1g o or

(1
The cracking moment, MC, is usually deemed to occur when the extreme tensile

fibre of the gross section reaches a limiting stress of 0.62/fg (10).

It is argued, with justification, that the use of equation 1 for limiting
the span to depth ratio of a beam is as reliable as limiting the deflection
of a beam calculated using equation 4. It is perhaps worthwhile here to

briefly comment on the applicability of equation 4.

Branson's equation was developed from a statistical study of 54 short-
term test specimens which all were loaded to at least twice the cracking
moment and which all had reinforcement ratios greater than 0.006. It is
of interest to note that most reinforced concrete slabs fall completely

outside the limits of Branson's study.

For lightly loaded members with low reinforcement ratios, such as most
slabs, the maximum in-service moment may be little more than the cracking
moment. In such cases, equation 4 suggests that little loss of stiffness

due to cracking occurs. However, cracking may occur at load levels well
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below that assumed by Branson due to tensile stresses induced by shrinkage
and by temperature changes. In fact, shrinkage induced cracking in slabs
can reduce the flexural stiffness even before the formwork is removed and

the slab is first loaded.

The use of equation 4, together with the long-term deflection multiplier
(equation 3), can therefore greatly underestimate slab deflections. Rangan
recognised this inadequacy and proposed an upper limit on the cracked
stiffness of beams with low reinforcement ratios (equation 2). The accuracy

of this expedient will be examined in Section 3.3.

3. ALLOWABLE SPAN TO DEPTH RATIOS FOR SLABS

3.1 Introduction

To extend Rangan's expression (equation 1) to include the case of two-

way slabs, several difficulties need to be overcome. Apart from the possible
inaccuracy of equation 4 for members with low reinforcement ratios, the

need to model plate action rather than beam action becomes paramount. The
two-way nature of the load dispersion and the stiffness of the orthotropic

reinforced concrete plate must be accounted for quantitatively.

Previous attempts to account for these factors and to develop simplified,
design oriented procedures for the control of slab deflections have been
hampered by a lack of suitable experimental data. Little research effort
has been expended on experimental investigations of the in-service behaviour

of slabs. It is only in recent years that sophisticated theoretical models

have been developed as research tools to generate the extensive data necessary

for the calibration of simplified models and procedures.

In the following sections, the extension of Rangan's expression to include
slabs is calibrated using the results obtained from a series of parametric

computer experiments using one such theoretical research model.

5.2 Computer Experimentation

The computer experiments were performed using a layered, compatible, plate
bending, finite element model which was developed to study the long-term
service-load behaviour of reinforced and prestressed concrete slabs (4).
This slab simulation model accounts for the various sources of material
non-1linearity, such as cracking, tension stiffening, creep and shrinkage,
and has been shown to accurately predict both the instantaneous and time-

dependent behaviour of a variety of concrete slabs.
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Using the finite element model, several reinforced concrete slab types

were analysed, including one-way slabs, two-way edge-supported slabs,

flat slabs and flat plates. The aim of this experimentation was to develop

a set of limiting L/d ratios which provides adequate control of in-service
deflections for each slab type. The advantage of this approach is that

results are obtained from a model which attacks the problem at a 'constitutive
relationship' level and which has been shown to agree well with macroscopic
measurements of structural behaviour. No use is made of empirical estimates

of stiffness or conclusions drawn from experimental testing of statically
determinate concrete beams. A description of the computer investigation

has been reported elsewhere (4,5).

To allow the results of the investigation to be of use to practising engineers,
a semi-empirical expression for the maximum allowable L/d ratio, which
provided close agreement with the experimental results for each slab type,

was previously developed (6). Whilst this expression has been shown to

provide adequate deflection control for slabs, it is restricted by the

scope of the computer investigation and cannot be extended to cover the

entire range of reinforced concrete flexural members.

Following the development of equation 1, it was decided to re-examine the
computer results in an attempt to develop a 'slab system factor' which

could be used to satisfactorily modify Rangan's expression.

3.3 One-Way Slabs

In Table 1, a comparison is made between the maximum permissible L/d ratios
determined experimentally on the computer and those obtained using equation 1
for a number of simply-supported one-way slabs. The maximum total deflection
was limited to L/250 and the characteristic compressive strength of the
concrete and the yield stress of the steel were Fé = 25 MPa and fSy = 410

MPa, respectively.

The L/d ratio obtained using equation 1 was determined by considering an
equivalent one metre wide beam with the same span and support conditions

as the one-way slab. The properties of the slab, which had a maximum total
deflection of L/250, were determined using successive iterations on the
computer and then fed into equation 1 to compare the two approaches. In

each case the quantity of tensile reinforcement was that required to satisfy

the design objective of adequate strength.
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TABLE 1
COMPARISON OF MAXIMUM PERMISSIBLE L/d RATIOS FOR SIMPLY-SUPPORTED
ONE-WAY SLABS

Slab No. Span Wy P Maximum Permissible L/d
(m) (kN/m®) (:AstfbdJ Experimental Equation 1

1 3.0 1.0 0.0029 33.0 31.8
2 5.0 1410 0.0030 28.0 27.6
3 7.0 1.0 0.0031 23.6 24.2
+ 3.0 3.0 0.0036 29.8 28.7
5 5.0 3.0 0.0036 26.2 25.4
6 7.0 3.0 0.0036 22.8 22.8
7 3.0 5.0 0.0042 27.5 26.0
8 5.0 5.0 0.0040 24.4 23.6
9 7.0 5.0 0.0040 21.7 21.4

Note: The sustained load for all slabs was L 1.0 kN/m? + self weight.

In each case, the slab reinforcement ratio is low. This indicates that stiffness

rather than strength is the main design concern.

Despite great differences in the methods of development, agreement between
the two approaches is excellent and Rangan's upper limit on the cracked
stiffness of members with low reinforcement ratios (equation 2) appears

to be well calibrated.

3.4 Edge-Supported Two-Way Slabs

In addition to the factors which affect beam and one-way slab deflections,
the deflection of a two-way, edge-supported, rectangular slab panel depends
on the boundary conditions on all four sides and, importantly, on the aspect
ratio, i.e. the ratio of the longer to the shorter panel dimension [lyflxj.
The load on the slab is resisted not only by orthogonal bending moments

but also by twisting moments.

In order to apply equation 1 to two-way slabs, it is necessary to devise
a simple yet reasonably accurate 'equivalent beam' which suffers the same
overall deflection as the uniformly loaded slab. Figure 1 shows a pair of
one metre wide beams at right angles through the centre of the slab panel,
similar to those first suggested by Marsh (7) in 1904. The support of each

beam has the same conditions of continuity as the corresponding edge of
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the slab. By enforcing the requirement that the midspan deflection of each
beam is equal, the fraction of the uniformly distributed load carried by

the beam strip in the short span direction may be readily calculated.

The shorter span beam in Figure 1 has been selected as the 'equivalent beam'

and the uniformly distributed load per metre resisted by the beam is calculated
as indicated above. If the two orthogonal beams have similar support conditions,
the fraction, k, of the total load carried by the equivalent beam may be

approximated by the well known expression -

1l+
P (5)
1; + 1"

Of course, this result is very approximate because it neglects the twisting
moments in the slab and assumes that the flexural rigidity of each beam

is similar.

To overcome these sources of inaccuracy and to provide close agreement with
the computer predictions, a 'slab system factor', Az, has been introduced
as an additional multiplication factor in equation 1. Values of A; for

two way edge-supported slabs depend on the aspect ratio of the slab and

are given in Table 2.

3.5 Flat Slabs and Flat Plates

Figure 2 shows a typical portion of a flat slab. The 'equivalent beam'
adopted for use with Rangan's expression is a one metre wide beam located
on the column line in the long-span direction. The reinforcement at any
point along the equivalent beam is the average of the appropriate column
and middle strip reinforcement quantities per metre width. Since the total
load is carried in both directions by the slab, the fraction k in a flat

slab is unity.

The slab system factor, A3, for flat slabs with and without drop panels
is given in Table 2 and, once again, was calibrated using the data obtained

from the complex computer based slab simulation model.
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TABLE II.

SLAB SYSTEMS FACTOR, Aj.

Aspect Ratio
Slab Type
1.0 1.25 | 1.50 | 2.0
One-Way Slab: 1.00 | 1.00 |1.00 | 1.00
Two-Way Edge-Supported Slab: | 1.23 1.15 1.09 | 1.04
*
Flat Slab :
With Drop Panels: 0.94 |1.00 |1.03 |1.08
Without Drop Panels: 0.8 [0.91 |0.95 |1.00

*Note: If an exterior panel of a flat slab has stiff spandrel
beams perpendicular to the equivalent beam, the factor
A3 may be increased by an additional factor of 1.03.
Drop Panels are assumed to satisfy the requirements of
AS 1480 (10) and are at least 33 percent thicker than
the adjacent slab.

3.6 Proposed Procedure

The maximum allowable span to depth ratio for a reinforced concrete
slab may be calculated by applying equation 6 to the appropriate

'equivalent beam' as defined in Sections 3.3, 3.4 and 3.5

oab . E 0-33
A ef "¢
L/d £ X1 X2 A3 ff CETE——jfj;j;—))1 (6)
v S
where X; 1is the factor which depends on the support conditions

of the equivalent beam and is defined in Section 2.1.
As 1s the slab system factor (Table 2).

k is the fraction of the total uniformily distributed
load carried by the equivalent beam and is unity

for one-way slabs and flat slabs,
bef is the effective width of the equivalent beam (one metre)

W and W, are the sustained and variable loads, respectively,
carried by the equivalent beam per unit length and are
numerically equal to the sustained and variable slab

loads per square metre.

All other notation is as defined in section 2.1.
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4. APPLICATION

4.1 Worked Example

A two-way edge-supported slab is discontinuous on one long edge and continuous
on the remaining three edges. The design data for the rectangular panel is

given below:

1
Y

7.5 m; 1 5.0 m; W 3.0 kPa; w_ = 7.0 kPa;
% v S

25 000 MPa;

11
1

F! 25 MPa; f 410 MPa; E
c sy c

and the maximum permissible total deflection is

L/250 (or 20 mm in this case).
The aim is to find the minimum required slab thickness.

It is first necessary to determine what portion of the total load, w, is
carried by the equivalent beam, which in this case is continuous at one support

only. The approximate procedure outlined in Section 3.4 is used here.

The midspan deflection, A, of the equivalent beam under the load kw is
approximated by

kw 1%

A= 2 %

384 “EI (7)

The beam through the slab centre at right angles to the equivalent beam is
continuous at both ends and suffers a midspan deflection of

"
1 (1-k)w 1y

A BpEy E 1 (8)

The fraction k is obtained by equating the midspan deflection of each beam.
Therefore

2 kw 1% = (1-K)w 1%
X y

and k = Yo— 0.7

To obtain an approximate minimum slab depth, an estimate of the average
reinforcement ratio is required. A reasonable first estimate is p = 0.004
and from equation 2, o = 4.46. The other parameters required for

substitution in equation 6 are as follows:
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10.

A1 = 1.3; d2 =1.0; Az = 1.09; A =20mm; ¢ = 3.0; L = 5000 mm;
bef = 1000 mm; W = 3.0 kN/m; and v = 7.0 kN/m,

By substituting into equation 6, the minimum L/d ratio is found to be
40.5 and the corresponding minimum effective depth is 5000/40.5 = 124 mm.
Using 12 mm diameter reinforcing bars and 20 mm minimum cover to the
steel in the short-span direction results in a minimum slab thickness of
150 mm.

With this size slab, the reinforcement in the short-span direction
required to satisfy the design objective of adequate strength is
approximately p = 0.0036 in the positive moment region and p = 0.0048
over the continuous support. The average value for p assumed in the
calculations above is considered acceptable and no refining iterations

are necessary.

4.2 Comparison with Test Data

No well documented, laboratory controlled long-term tests of two-way
reinforced concrete slabs exist. However, field measurements on several
in-service slabs were presented by Taylor (11) and form a suitable set

of data for comparison with predictions made using equation 6.
Case 1:

An internal panel of a flat plate roof slab, with plan dimensions of

6.35 m by 5.08 m measured from centre to centre of columns, was analysed.
The slab was 203 mm thick with an effective depth to the steel in the long
span direction of 173 mm. The actual L/d ratio was therefore 36.7. The
sustained load, including the self weight, was 5.27 kPa, construction
loads were negligible, and the roof was non-trafficable. The variable

load was therefore taken to be zero.

The average reinforcement ratio in the 'equivalent beam' and the other
parameters required for substitution into equation 6 are listed below
and are obtained from the reinforcement quantities and material properties

reported by Taylor (11).

A1 = 1.5; Az = 1.0; X3 = 0.91; p 0.0049; o = 3.70; EC = 25 160 MPa;

b =1 000 mm; w_ = 5.27 kN/m;j w_ =0; L =6 350 mm; k = 1; and
ef s \

F is taken as 2.0.
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11.
The total midpanel deflection measured by Taylor was A = 19 mm after 21
years. With this data, equation 6 suggests that the L/d is

0-33
L/d = 1.5 x 1.0 x 0,91 [L2:0 3:70 x 1000 x 25160,

6350 3 x 5.27

= 34.4

The incremental deflection, which occurred after the initial or short-
term deflection, was 15.5 and if this is used in equation 6, the required
L/d is

15.5 3.70 x 1000 x 25 160]"'33
6350 2 X 5.27

L/d

1.5 x 1.0 x 0.91 [

36.8

Both these predictions are in close agreement with the actual span to

depth ratio of the slab.
Case 2:

An internal panel of a flat plate floor in an open air carpark, which

was constructed in 1965 and monitored by Taylor (11) for a period of

3; years, was analysed. The slab was 241 mm thick with 2440 x 2440 x

152 mm drop panels over each column and an effective depth to the long
span reinforcement at midspan of 212 mm. The panel plan dimensions were
8.61 m by 7.93 m, measured centre to centre of the columns, and the actual
L/d ratio was therefore 8610/212 = 40.6. The sustained load was 5.75

kPa and the variable live load was 2.87 kPa.

The reinforcement layout and material properties used in the analysis

of the equivalent beam are as detailed by Taylor. It is noted that the
slab reinforcement was designed by assuming it to be a flat plate without
drop panels. The presence of the drop panels increases the slab stiffness
and provides a large reserve of strength. At the same time, the relatively
deep drops reduce the reinforcement ratio, p, over the columns.

The parameters required for substitution into equation 6 are

Ar = 1.5; A2 = 1.0; Az =0.96; o = 5.0; bef =1 000 mm; Ec = 24 500 MPa;
L = 8 610 mm; Wy = 5.75 kN/m; and . = 2.87 kPa.

The incremental deflection which occurred with time after the removal of

the formwork was A = 18 mm and, from equation 6, we have

18.0 5.0 x 1 000 x 24 500]°'33
8610 2.87 + 2.0 x 5.75

L/d

1.5 x 1.0 x 0.96 |

= 36.4
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12.

This is a little less than the actual L/d ratio. However, the drop panels
were deeper than those used in the computer experiments which led to

the calibration of the slab system factor, \s;, (a 62% increase in slab
thickness compared with the 33% increase assumed) and a smaller L/d

ratio is to be expected.

5. CONCLUSION

A simple, design oriented procedure for the control of deflections in
reinforced concrete slab systems has been proposed. A maximum allowable
span to depth ratio is calculated using a rational procedure first
developed for beams by Rangan (8) and extended to cover the entire range
of reinforced concrete flexural members. The procedure was calibrated
using data generated by a finite element slab simulation model and has

been shown to agree well with field measurements of in-service slabs.
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Figure 1 The 'Equivalent Beam' in a Two-Way
Edge Supported Slab
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Figure 2 The 'Equivalent Beam' in a Flat Slab
or Flat Plate.
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